
International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 1
ISSN 2250-3153

www.ijsrp.org

A Research Study on Software Quality Attributes

Dr.A.Chandrasekar
 *
, Mrs.SudhaRajesh

 **
, Mr.P.Rajesh

* Professor, CSE Department, St.Joseph’s College of Engineering

** Asst. Prof, CSE Dept., SRR Engineering College
*** Asst. Prof, IT Dept, M.S.A.J College of Engineering

Abstract- Software quality is becoming an important part in

software design, helping the designer to handle the complexity of

large systems. While designing, the architect should analyze the

system requirements before committing the resources to it. The

analyzing process helps us to ensure the high quality of

architecture design. For the past decade, there were many

analyzing methods are used, which in turn to analyze only the

views of single stakeholder. By doing so, there are many

limitations that lead to critical situation in the development

process. They elaborated this situation to excessive amount of

time to perform the complete analysis. The scope of finding the

key architectural decision is very difficult. Intend of these types

of analysis gives the detailed information only after the designing

phase, which makes the software unusable and not satisfied by

the end-users. Generally, unusable software is useless. Customers

and users won’t accept un¬usable software, even if it provides

the required features with the required operations.

 This paper gives the survey on software quality attributes. It

is also used to manage the conflicts in views by analyzing it, with

finest software quality attributes such as Performance,

Dependability and Safety concerns. It represents one or more

structural aspects, which illustrate how the architecture addresses

the concerns such as requirements, objective, intention of

stakeholders for the architecture design. This paper also gives the

stakeholder’s views with preeminent quality attributes, which

meets the non functional requirements (such as reliability,

usability, maintainability and portability). Thus by having the

centric-view of stakeholders with superlative software quality

attributes, guarantees an optimum quality for software

architecture design.

Index Terms- Quality Attributes

I. INTRODUCTION

here are many different definitions of quality. For some it is

the "capability of a software product to conform to

requirements." (ISO/IEC 9001) while for others it can be

synonymous with "customer value" (Highsmith, 2002) or even

defect level.

 The first definition of quality history remembers is from

Shewhart in the beginning of 20th century: There are two

common aspects of quality: one of them has to do with the

consideration of the quality of a thing as an objective reality

independent of the existence of man. The other has to do with

what we think, feel or sense as a result of the objective reality.

 In the context of software engineering, software quality

refers to some relations but distinct notions that exist wherever

quality is defined in a business context:

 Software functional quality reflects how well it complies

with or conforms to a given design, based on functional

requirements or specifications. That attribute can also be

described as the fitness for purpose of a piece of software.

 Software structural quality refers to how it meets non-

functional requirements that support the delivery of the

functional requirements, such as robustness or maintainability,

the degree to which the software was produced correctly.

Quality Attributes

 Software quality is defined as the degree to which software

possesses a desired combination of attributes. [1]The quality

requirements to build the software architecture have to fulfill the

stakeholders. They are commonly divided in two main groups

based on the quality they are requesting, i.e., development and

operational qualities. A development quality requirement is a

requirement that is of importance for the developers work, e.g.,

maintainability, understandability, and flexibility. Operational

quality requirements are requirements that make the system

better from the user’s point of view, e.g. performance and

usability. Depending on the domain and priorities of the users

and developers, quality requirements can become both

development and operational, such as performance in a real-time

system.

 A quality attribute is the property of a software system. A

quality requirement is a requirement that is placed on a software

system by a stakeholder; a quality attribute is what the system

actually presents once it has been implemented. During the

development of the architecture it is therefore important to

validate that the architecture has the required quality attributes,

this is usually done using one or more architecture evaluations.

Quality Attributes in Focus

 The focuses are on the following quality attributes:

performance, maintainability, testability, and portability.

 The IEEE standard 610.12-1990 [2] defines the four quality

attributes as:

 Maintainability: This is defined as: ―The ease with which a

software system or component can be modified to correct faults,

improve performance or other attributes, or adapt to a changed

environment.‖

 Maintainability is a multifaceted quality requirement. It

incorporates aspects such as readability and understandability of

the source code. Maintainability is also concerned with testability

to some extent, as the system has to be re-validated during the

maintenance.

Performance: Performance is defined as:

T

http://en.wikipedia.org/wiki/Software_engineering

International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 2

ISSN 2250-3153

www.ijsrp.org

 ―The degree to which a system or component accomplishes

its designated functions within given constraints, such as speed,

accuracy, or memory usage.‖

 There are many aspects of performance, e.g., latency,

throughput, and capacity.

 Testability: Testability is defined as: ―The degree to which a

system or component facilitates the establishment of test criteria

and the performance of tests to determine whether those criteria

have been met‖.

 The effort needed to validate the system against the

requirements. A system with high testability can be validated

quickly.

 Portability: Portability is defined as: ―The ease with which a

system or component can be transferred from one hardware or

software environment to another.‖

 The portability is not only between different hardware

platforms and operating systems, but also between different

virtual machines and versions of frameworks.

II. RELATED WORK

 The quality attributes are very important for the software

design to satisfy the users. The quality attributes are measured in

different ways as follows,

A. Architecture Quality Revisited

 Frank Buschmann, David Ameller, Claudia P. Ayala, Jordi

Cabot, and Xavier Franch [3], a study that says ―Non-Functional

Requirements in Software Architecture Practice,‖ investigates

how architects deal with nonfunctional requirements (NFRs) in

their daily practices. The results appear contradictory to the

common belief that nonfunctional quality is fundamentally

important for architecture sustainability and project success.

They raised some questions as,

 What types of NFRs are relevant to software architects?

 How are NFRs elicited?

 How are NFRs documented?

 How are NFRs validated?

 They also suggest that nonfunctional quality is of little

relevance to users and customers but mainly a concern for

architects. Nontechnical constraints appear to be driving design

as prominently as quality requirements.

B. Defect Tracking Systems

 Jan M.W. Kristiansen, Steria [4], introduced Defect

Tracking Systems (DTS), to facilitate software quality

improvement. The focus is mainly on either revising the values

of existing defect classification attributes in an existing DTS or

introducing new attributes. Primarily, they wanted to give project

managers and developers more current, relevant, correct, and

easy-to- analyze defect data for assessing software quality and

finding potential SPI measures in a cost-effective way. A case

study is done by collecting some data from companies to track

the defects in the quality attributes. None of the companies

recorded the actual effort used to fix a defect, so they perform

root-cause analysis to prevent further defects, especially for those

that were most costly to fix. Other problems included as

incomplete data, inconsistent data, mixed data. The DTS

improvement aimed to reduce the defect density and to improve

defect-fixing efficiency. To achieve this goal, the DTS must

provide supplementary information that the quality assurance

(QA) managers could use to answer the following questions:

 What are the main defect types?

 How the companies prevent defects in a project’s early

stages?

 What are the reasons for the actual defect-fixing effort?

C. Guideline-Based Approach

 Malik Hneif and Sai Peck Lee[5], their approach is to

achieving Non-Functional Attributes (NFA) quality is

preventive, as opposed to curative- that is, it focuses on

preventing defects associated with NFAs during the software

development life cycle, rather than identifying and correcting

defects after testing. Practical implementation is done through an

optimal set of prioritized guidelines that software engineers can

identify and apply efficiently throughout system development.

The approach has two steps as

 Selecting Guidelines

 Using Guidelines to Prevent NFA Defects

 Three factors affect the guideline selection - NFA priorities,

Guideline effects on NFAs, Guideline interrelationships. After

selecting guidelines there should not be any overlapping or

conflicts. Then there are two stages to prevent NFA defects as

preparation stage and application stage.

D. Software Components Quality in Bayesian Networks

 M. F. Bertoa, M. A. Moraga, M. C. Morcillo and C.

Calero[6], they suggests to improve the quality of software

products, which traditionally focused on improving the Internal

or External Quality based on the idea that a good External

Quality guarantees a good Quality in Use. To analyze the

relationships between External Quality and Quality in Use with

the external quality sub characteristics Bayesian Networks is used

to model these relationships and provide a method to define them

in a measurable way.

E. Risk-based requirements model

 Martin S. Feather, Steven L. Cornford, and Kenneth A.

Hicks, James D. Kiper, Tim Menzies[7], they proposed the

Defect Detection and Prevention(DDP) model to make the early

decision of requirements in the software development phases.

They populate this model with three concepts as Requirements:

What are the functional and nonfunctional requirements of the

project, system, or technology? How might they factor into its

development? Risks: What might delay attaining these

requirements? Mitigations: What to reduce risks?

F. Issue-Oriented Approach

 Norman F. Schneidewind [8], suggested this approach is to

measure the software quality in two ways that address nine issues

in software companies. The first approach derives knowledge

requirements from a set of issues identified during two standards

efforts—IEEE Std. 1061-1998 for a Software Quality Metrics

Methodology and the American National Standard

International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 3

ISSN 2250-3153

www.ijsrp.org

Recommended Practice for Software Reliability (ANSI/AIAA R-

013-1992). The second approach ties these knowledge

requirements to phases in the software development life cycle.

Together, these approaches define a body of knowledge that

shows software engineers why (issue-oriented) and when (phase-

oriented) to measure quality. By answering these issues the

software engineers perform the function in life-cycle quality

management plan. The issues are goals, Cost and risk, context,

Operational profile, model, data requirements, Measurement

types and granularity, Product and process test and evaluation,

Product and process quality prediction. It also accounts for time,

with measurements obtained during the early part of the life

cycle being generally less quantitative than those obtained later.

Both the product and process evolve over the lifecycle phases, so

the objects measured during test and operation are not the same

objects measured during requirements analysis. Not only are the

objects different but requirements and design approaches can

change many times during the life cycle.

G. Software Quality Measurement

 Ho-Won Jung and Seung-Gweon Kim, Chang-Shin Chung

[9], a survey is made on software quality measurement and to

address the issues of software product quality, which is defined

by the Joint Technical Committee 1 of the International

Organization for Standardization and International Electro

technical Commission published a set of software product quality

standards known as ISO/IEC 9126. These standards specify

software product quality’s characteristics and sub characteristics

and their metrics. However, some in the software engineering

community have expressed concerns

about a lack of evidence to support such standards. User

satisfaction is often considered a critical outcome of quality

management, and studies show it as having a positive impact on

organizational cost, profit, and sales growth. The defined

Characteristics are Functionality, Reliability, Usability,

Efficiency, Maintainability, and Portability.

Table I. Scope and Limitations of Existing Methods

Method

Name

Scope Limitations/Future

Enhancements

Architecture

Quality

Revisited

[3]

the study suggests

that nonfunctional

quality is of

little relevance for

users and

customers, and is

instead primarily a

concern for

Software architects.

The practitioners

consider non -functional

qualities as an

afterthought, rather than

as a prime driver of

architecture design.

Development teams

underestimate the

contribution of

nonfunctional qualities

to a system’s success

Defect

Tracking

Systems(DTS)

[4]

The improved DTS

provided valuable

inform –ation to

initia -lize and

justify software

process

improvements and

In future it continuous

the work to collect more

cost and benefit data of

these DTS

improvements to get a

comprehensive

understanding of their

software quality

assessment.

Return On Investment

(ROI)

Guideline-

Based

Approach

 [5]

 an approach for

improving NFA

quality by

identifying guide -

lines to help

software engineers

better meet non

functional requ-

irements during

system design,

implementation,

and deployment.

However, some NFAs

might require a specific

quality level.

Quantification

techniques could enable

achievement of a

targeted NFA quality

level though not

necessarily the highest

level.

Software

Components

Quality in

Bayesian

Networks

[6]

The aim is to avoid

un -necessary costs

or irrelevant

characteristics for

the end users who

un -necessarily

raise the cost and

effort of product

development.

Sometimes there will be

confusion in choosing

sub characteristics of

quality attribute, that

lead to more cost, which

dissatisfy the end users.

Risk-based

requirements

model

 [7]

The method’s name

reflects its purpose:

to help developers

cost-effectively

select assurance

activities and

thereby both

prevent the

introduction of

hardware defects

and detect and

correct existing

ones.

As a future research,

they planned to continue

in studying the

requirements needs of a

wide

variety of technologies

as software, hardware,

and combinations of the

two.

Issue-Oriented

Approach

 [8]

The approach

derives knowledge

requirements from

a set of issues

identified and ties

these knowledge

requirements to

phases in the

software

development life

cycle. Together, it

define a body of

knowledge to

software engineers

why and when to

measure quality.

They suggested in

giving the requirements

a high priority in the

core body of knowledge

for software

engineering, adding it to

the requirements for

certification and

licensing. So doing

would help advance

quality measurement

from a craft to a

profession

Software

Quality

Measurement

[9]

A survey is made to

empirically

investigate whether

the ISO/IEC 9126

categorization is

correct and reliable

The survey data should

be augmented with more

comprehensive measures

of product quality in

future studies.

Replications of study

International Journal of Scientific and Research Publications, Volume 4, Issue 1, January 2014 4

ISSN 2250-3153

www.ijsrp.org

in evaluating user

satisfaction with the

judgment of a

packaged software

product’s quality.

using other statistical

analytic methods such as

confirmatory factor

analysis are also

necessary to substantiate

or clarify the present

results.

III. PROBLEM STATEMENT

 From the above study of various people’s views, it is clearly

shown that quality attributes are very important for the software

development phase. The main purpose of the quality is to satisfy

the users and it is precious in all products. But in most of the

time the software architects are not serious with this quality

attributes. So here the problem is to

1. Identify the preeminent quality attribute to evaluate

efficient software architecture which also to meet the

non-functional requirements

2. Identify the measuring tools to estimate the non

functional quality attributes.

Proposed Solution

 According to the problem statement, a view ―Quality Centric

Architectural Views (QCAV) ― is proposed in which there is a

need to identify potential issues in an architecture, its feasibility

and to evaluate its ability to meet its quality requirements and to

generate the centric view for designing the architecture with the

improved quality attributes to satisfy the stakeholders.

Figure1.Proposed Model

IV. CONCLUSION

 Quality is the main focus of any software engineering

project, because it is transparent when presented, but easily

recognized in its absence [10]. Software quality is the degree to

which software possesses a desired combination of attributes. A

quality attributes is a property of a work product by which its

quality be judged by stakeholders [10]. Without measuring, we

cannot be sure of the level of quality in software architecture

design. So a model is proposed to identify preeminent quality

attribute and to identify the measuring tools to estimate the non

functional quality attribute.

REFERENCES

[1] L. S. Maurya et al,‖ Comparison of Software Architecture Evaluation
Methods for Software Quality Attributes‖,Journal of Global Research in
Computer Science, 1 (4), November 2010.

[2] IEEE std 610.12-1990 (n.d.). , ―IEEE Standard Glossary of Software
Engineering Terminology‖, 1990. Retrieved January 19, 2006. Web site:
http://ieeexplore.ieee.org/.

[3] Frank Buschmann, David Ameller, Claudia P. Ayala, Jordi Cabot, and
Xavier Franch,‖ Architecture Quality Revisited‖, IEEE Software | published
by the IEEE computer socie ty, 2012.

[4] Jan M.W. Kristiansen, Steria,‖ Enhancing Defect Tracking Systems to
Facilitate Software Quality Improvement‖, IEEE Software
www.computer.org/ software, 2012.

[5] Malik Hneif and Sai Peck Lee, University of Malaya,‖ Using Guidelines to
Improve Quality in Software Nonfunctional Attributes‖, IEEE Software |
Published by The IEEE Computer Society,2011.

[6] M. F. Bertoa, M. A. Moraga, M. C. Morcillo and C. Calero,‖ An Analysis
of the Software Components Quality in Use using Bayesian Networks‖,
IEEE Latin America Transactions, vol. 8, no. 2, April 2010.

[7] Martin S. Feather, Steven L. Cornford, and Kenneth A. Hicks, James D.
Kiper, Tim Menzies, ―A Broad, Quantitative Model for Making Early
Requirements Decisions‖, IEEE software, March/April 2008.

[8] Norman F. Schneidewind, Naval Postgraduate School,‖ Body of
Knowledge for Software Quality Measurement‖, IEEE research feature,
2002.

[9] Ho-Won Jung and Seung-Gweon Kim, Korea University, Chang-Shin
Chung, ―Telecommunications Technology Association, Measuring
Software Product Quality: A Survey of ISO/IEC 9126‖,‖ IEEE software –
IEEE computer society ‖ , 2004.

[10] Leire Etxeberria MU, ‖Method for analysis-aided design decision making
and quality attribute prediction‖, Embedded System for energy efficient
building, 2010.

[11] Juha Savolainen, ―Conflict – Centric Software Architectural Views:
Exposing Trade - Offs in Quality Requirements‖, IEEE 2010.

[12] Alexander Egyed , ―Automatically Detecting and Tracking Inconsistencies
in software Design models‖, IEEE 2010.

[13] Frank Buschmann, ―Unusable Software is Useless, Part1‖, IEEE 2011.

[14] Frank Buschmann,―Unusable Software is Useless, Part2‖, IEEE 2011.

AUTHORS

First Author – Dr.A.Chandrasekar, Professor, CSE Department,

St.Joseph’s College of Engineering, OMR, Chennai, India.,

drchandrucse@gmail.com

Second Author – Mrs.SudhaRajesh, Research Scholar,

Sathyabama University, Assistant Professor, CSE Dept, SRR

Engineering College OMR, Chennai, India,

sudharajesh2005@gmail.com.

Third Author – Mr.P.Rajesh , Assistant Professor, IT Dept.,

M.S.A.J College of Engineering, OMR, Chennai, India.,

rajeshpadmanaban08@gmail.com.

