CHALLENGE IN CLOUD COMPUTING QUEST TO ENABLE THE FUTURE OF IOT OR COST EFFECTIVENESS IN CLOUD COMPUTING QUEST TO ENABLE THE FUTURE OF IOT

Written by:

Dr Assem Abdel Hamied Moussa
Preface

Cloud computing can be a less expensive, quicker, and greener distinct option for an on-premises arrangement. With no foundation speculations, you can get intense software and enormous computing assets rapidly with lower in advance expenses and less administration headaches. Cloud-based arrangements when assessing alternatives for new IT organizations at whatever points a safe, solid, financially savvy cloud alternative exists. Moving your office into the cloud can be a huge choice, with numerous contemplations. This thesis aims to introduce all the constituents and interactions of cloud computing.

The thought behind ubiquitous computing is to encompass ourselves with PCs and software that are precisely tuned to offer us inconspicuous help as we explore through our work and individual lives. Stand out this from the universe of PCs as we probably am aware them now. Others endeavor to offer help yet convey just dissatisfaction, similar to that new Web cam's programmed establishment schedule that didn't exactly perform the majority of the arrangement fundamental and didn't offer any direction on what else expected to be finished.

We are found in a fascinating trap. On one hand, we are bewildered by the guarantee of more prominent efficiency and accommodation. On the other, we are disappointed by devices that are weak and unintuitive. In spite of the fact that much software is simpler to use than any time in recent memory, it feels as if we are a long way from the sci-fi long for subtle PCs that give us a chance to work actually and that work as consistent augmentations of our own work styles. There is trust, be that as it may. The ubiquitous computing development is centered on this apparently removed vision and may help us accomplish the more noteworthy efficiency that sits with it not too far off.

Ubiquitous computing (regularly condensed to "ubicomp") alludes to another sort of computing in which the PC totally saturates the life of the client. In ubiquitous computing, PCs turn into an accommodating however undetectable power, helping the client in addressing his or her needs without acting as a burden. In the event that PCs are to be all around, unpretentious, and really accommodating, they must be as little as could be allowed and fit for conveying between them. Innovative developments supporting these goals are now well in progress under the rubrics nanotechnology and wireless computing.

The pattern toward scaling down of PC parts down to a nuclear scale is known as nanotechnology. Nanotechnology includes assembling exceptionally scaled down PCs from individual iotas or atoms going about as transistors, which are the heart of the PC chip. The quantity of transistors in a chip is demonstrative of its energy. In this manner, nanotechnology's compelling scaling down of transistors takes into account great levels of computing energy to be put into little bundles, which can then be inconspicuously concealed. Wireless computing alludes
to the utilization of wireless technology to join PCs to a system. Wireless computing is so appealing in light of the fact that it permits laborers to escape the tie of a system link and access system and communication services from anywhere inside of range of a wireless system. Wireless computing has pulled in huge business enthusiasm, as saw by customer interest for wireless home systems, which can be acquired for a few hundred dollars. The second creator has a three PC wireless system in his home.

Little PCs that impart wirelessly give a fundamental base to ubiquitous computing. Notwithstanding, base is just 50% of the fight. As noted over, the ubiquitous computing development intends to make PCs more supportive and less demanding to utilize. Without a doubt, PCs ought to have the capacity to precisely envision the client's necessities and oblige his or her characteristic communication modes and styles. These subjects are caught inside of the ubiquitous computing development's emphasis on connection mindful computing and normal communication. The guarantee of connection mindfulness is that PCs will have the capacity to see a sufficient client's present circumstance to offer services, assets, or data important to the specific setting. The credits of connection to a specific circumstance change generally, and may incorporate the client's area, current part (mother, little girl, office supervisor, soccer mentor, and so on.), past movement, and full of feeling state. Past the client, setting may incorporate the present date and time, and different protests and individuals in nature. The application of connection may incorporate any mix of these components. For instance, a connection mindful guide may utilize the data that the client is far from home, has no arrangements, and that the time is 6:00 at night to discover that the client could soon be occupied with supper. It would then plan to offer the client direction to adjacent eateries if he or she make such a solicitation.

Presently, utilizing the PC is a piece of the assignment we are endeavoring to fulfill another thing to concentrate on, learn, or do with a specific end goal to perform an objective. The thought behind characteristic collaboration is for the PC to supply services, assets, or data to a client without the client needing to consider the tenets of how to utilize the PC to get them. Thusly, the client is not distracted with the double errands of utilizing the PC and getting the services, assets, or data. Donald Norman, a surely understood scientist in human–computer association, once said that he doesn't need a word processor; he needs a letter essayist something that will permit him to take care of business of composing a letter, without the instrument acting as a burden. The components of ubiquitous computing nanotechnology, wireless computing, setting mindfulness, and regular association offer an effective arrangement of instruments to accomplish the guarantee of ubiquitous computing. To give a superior feeling of what this future holds, we should examine how ubiquitous computing may play out in the working environment.

It's the start of the day and Elaine has a noteworthy presentation to take a shot at for a business call. Two weeks prior, when the getting was situated together, she trained her schedule to calendar two extra gatherings with her group to get ready for the presentation. Better late than never for the second meeting and she strolls into the gathering room that her timetable had saved. The presentation on the gathering room entryway records the title of the meeting and verifies participants as they enter. The monster "work board" on one mass of the room has preloaded the majority of the reports identified with the presentation and is sitting tight for data. At the point when everyone has touched base for the meeting, the showcase on the conference room entryway records the meeting as "in advancement" and diminishes the window to minimize diversion from the occupied lobby outside.
The UbiquiTrain framework is in view of a database of preparing substance to which clients join through desktop PCs and wireless handheld frameworks. UbiquiTrain burdens preparing substance as indicated by a calculation that incorporates various setting related signs. The principal signal fixates on the client's timetable. Case in point, if there is an up and coming meeting called by the client, Ubiqui-Train would load preparing substance on the best way to lead gatherings. As the meeting time approaches, this preparation substance buoys to the highest priority on the rundown of themes accessible. A second prompt summons the setting of the client's present exercises. In the event that the client is dealing with an assignment identified with a thing on his or her schedule, UbiquiTrain would load comparing substance, too. Case in point, the client dealing with a proposition would signal UbiquiTrain to ring preparing con-tent on composed communication by and large and proposition writing specifically. UbiquiTrain holds content good to go ought to clients request it. The framework does not request the client's consideration.

As befits the way of ubiquitous computing, clients connect with UbiquiTrain in the way that feels most common to them. A few clients converse with the framework, requesting that it demonstrate to them a specific bit of preparation.
Dr Assem Abdel Hamied Moussa, 2015 Bristol PHD, president of ASDF (association of scientist, developer, faculties) in Africa, MEMBER OF ASDF Governing Council, Member of United Nation in High Level Meeting for SDG 2015-2030 in Sept and Dec 2015 at UN Head quarter AT NY, High Level Speaker in United nation for World Summit Information SOCIETY WSIS 2015, and winner of Best industrial researcher by Asdf in Dec 2014 as 1st one not only from Egypt but also from Arab and Africa countries and titled 2 times as E commerce global expert 2014-2015 AND Life Time Achievement by intercontinental who’s who and member of international and intercontinental who’s who, Member of IEEE, also international journals Author for papers in new technology cloud of things in IJIRD Journal, editor and international conferences program Chief-Guest Honor, Publication Chair, Conference Chair Key note speakers and reviewers. Assem Mousa, serves as E-Commerce Tech Support Systems Manager for Egypt Air. Performing duties as necessary to ensure the continued soundness and stability of operations, he supervises activities and staff involved in maintaining Egypt Air’s operation impact at a high level. Mr. Mousa strives to benchmark systems operations against international standards. Possessing technical proficiency and strong leadership capabilities, Mr. Mousa manages the frequent flyer systems for customers as well as ensures availability of systems servers. Charged with developing Egypt Air’s strategic planning objectives relating to support systems, Mr. Mousa also ensures that related hardware, software and other components are properly selected, developed and implemented. In addition, he is responsible for monitoring systems to detect problems/deficiencies and recommending changes and solutions as he is skilled at estimating resource requirements/implementation costs. Reporting to the chief information officer, Mr. Mousa has frequent contact with all department
managers. Working in a fast-paced work environment, he travels to different locations to ensure operating systems and sub-systems are functional and operational furthering business objectives.
Acknowledgement

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, Within the title of Probably the Most Thoughtful Allah and also the Merciful Alhamdulillah, I reward and appreciate Him, consult Him for His aid and Forgiveness, and that I find sanctuary in Allah from the mischiefs of our actions and also the evils of our spirits. He whom Allah guides will not be misled, and he whom Allah misleads will never have a guide. I state that there's no deity but Allah alone, with no companions, and that Muhammad is His 'Abd (worshiper) and Messenger.

First of all, I appreciate Allah (subhana wa taala) for bestowing me with wellness, persistence, and understanding to accomplish this thesis. Because of Allah forgiving me the power for this chance and also the persistence to accomplish my dissertation after the challenges and hard work.

I'm by using this chance to convey my appreciation to everybody who backed me throughout this dissertation. I'm grateful because of friendly, invaluably good critique and their ambitious assistance throughout the project work. I'm truly thankful for them for discussing their illuminating and sincere sights on the quantity of problems associated with the task.

As the internet changes our live; the cloud of things change and impact our live again. The significance of the dissertation within the following: cot tech tackle the two mankind problem in healthcare and energy, helping elderly and handicapped people and holds the promise of fixing the millennium-old human problems of poverty, disease, violence, and poor leadership.

At a time when all the world are worried about the fast spreading Zika virus, it is figured out that a wearable device could be an effective tool for preventing it, "You can compute the genome of a human being in less than seven days," "One day we will have the genome sequence of all our patients and we are then in the position to compare [that] data on a regular base with reference data."

This allows clinicians to easily identify defects in the genome and can also be used to compute the chance that someone will get a type of cancer and dedicate it to Egypt, Arab Africa countries and all the world. Then thanks to father Abdel Hamied and mother Aisha who pass away for all the beautiful things that done in me and my life. I am fortunate in my own existence to possess parents who’ve proven me unconditional assistance and love. Ties and the associations that I've with my parents maintain of meaning in my experience a massive quantity. I appreciate them for all the knowledge and wisdom that they have passed on to their children over the years, due to their freedom, due to their hierarchical part within our household, as well as for several of the
achievements in existence. Individually, my parents have performed with an essential part within the improvement of my identification and framing the person that I'm today. They've trained me a good deal concerning the aging procedure and about growing older gracefully.

Phrases can't convey how thankful I'm to wife Noha and my mother-in law Noara, the sacrifices for all that give me confidence to work on this dissertation and there continuous support. Your prayer for me personally was what helped me so far. My kids Aliaa and Yusuf for teaching me the new technology. I am very thankful to them.

I appreciate all my cousin and family for all my upbringing and for leading encouraging, and helping me and my study tips. In my opinion that I am profoundly grateful to all of them due to their essential efforts, and am greatly lucky to possess caused such an exceptional people in my life. I'm thankful for that love, reassurance, and threshold of my sister Hala and brother Emad that has created all of the distinction in my own life. Without compromise and there persistence, I really could not need finished this dissertation. A unique word-of cheers likewise would go to my loved ones due to reassurance and their constant assistance.

I'd prefer to devote this thesis for all my professors, coaches, friends and leaders, colleges and all specially Dr. Kokula Krishna, Dr Anbuoli Parthasarathy. I'd prefer to convey thanks and my unique understanding to my consultant Mentor Dr. Kokula Krishna, you've been a significant coach for me personally. I'd prefer to thanks for permitting me to develop like a research scientist as well as for pushing my study. Your suggestions about my profession in addition to on both study have already been priceless. I'd also prefer to appreciate teacher Dr. Anbuoli Parthasarathy. I wish to appreciate you for your amazing remarks, as well as for allowing my protection be a satisfying second and recommendations, because of you. I'd particularly prefer to appreciate professors, coaches, friends, leaders, colleges who helps with this dissertation, a unique because of my loved ones. Obviously, first and last, all compliment and cheers are because of Allah (SWT), might He (AWJ) eliminate us for almost any errors and present us the right path.

Cloud of things technology can address the 17 SDG GOALS FOR 2030 Agenda and the 169 Goals.

I thanks to United Nation, ITU, Wsis.all org for giving opportunity to present in international events held in Switzerland and New York. I thanks to IEEE also. I Thanks to Cairo University (engineering/commerce)-Sadat academy-ASDF-Bristol University and to Egypt air. I thanks to International who’s who and intercontinental who’s who. I special thanks to IJSRP journal for Publishing my PhD thesis and IJIRD journal for publishing 3 papers related to my PhD thesis and to all conferences in all the world that I attended as a speaker to present my PhD thesis.
Copyright and Trademarks

All the mentioned authors are the owner of this Monograph and own all copyrights of the Work. IJSRP acts as publishing partner and authors will remain owner of the content.

Copyright©2016, All Rights Reserved

No part of this Monograph may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the permission in writing of the Authors & publisher.

Copying of content is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the national Reproduction Rights Organization.

Trademarks used in this monograph are the property of respective owner and either IJSRP or authors do not endorse any of the trademarks used.
Table of Content

1. CHAPTER 1: INTRODUCTION 14
 1.1 BUSINESS CONTEXT 14
 1.2 RESEARCH BACKGROUND 16
 1.2.1 CLOUD DEPLOYMENT STRATEGIES 17
 1.2.2 CLOUD DELIVERY MODELS 17
 1.2.3 OPPORTUNITIES 18
 1.3 RESEARCH OBJECTIVES 18
 1.3.1 PURPOSE OF THE RESEARCH 18
 1.4 CHALLENGE OF CLOUD TO DEAL WITH IOT AND COT. 18
 1.4.1 SECURITY 19
 1.4.2 EXECUTION 19
 1.4.3 ACCESSIBILITY 19
 1.4.4 ADMINISTRATIVE NECESSITIES 19
 1.4.5 DATA TRANSFER CAPACITY, NATURE OF SERVICE AND INFORMATION LIMITS 19
 1.4.6 SIGNIFICANT SUPPLIERS 19
 1.5 UBIQUITOUS IOT APPLICATION 19
 1.6 FOUR PILLARS OF IOT. 20
 1.7 SMARTER CONNECTED PRODUCTS. 20

2. CHAPTER 2: LITERATURE REVIEW: CLOUD SERVICE ARCHITECTURES 21
 2.1 ADVANCED DATA ANALYTICS 21
 2.2 APPLICATION DEVELOPMENT TECHNOLOGIES 21
 2.3 DNA OF IOT 21
 2.4 UBIQUITOUS COMPUTING 22

3. CHAPTER 3: HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE 25
 3.1 FUTURE OF HCI 26
 3.2 ARTIFICIAL INTELLIGENCE 27
 3.3 CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE 27
 3.3.1 IBM’S WATSON 28
 3.4 FUTURE OF ARTIFICIAL INTELLIGENCE 29
 3.4.1 REPETITION WORK WILL BE DONE BY MACHINES 29
 3.4.2 COORDINATING DATA TO PROFILES 29

4. CHAPTER 4: SENSOR NETWORKS, WIRELESS TECHNOLOGY AND NANOTECHNOLOGY 30
 4.1 SENSOR NETWORKS 30
 4.1.1 ARCHITECTURE 32
4.1.2 ENERGY EFFICIENCY 33
4.1.3 LOCALIZATION 34
4.1.4 SENSOR APPLICATIONS 34
4.2 WIRELESS COMMUNICATION 36
4.2.1 EVOLUTION OF TECHNOLOGY 36
4.2.2 DIFFICULTIES IN NEXT GENERATION COMMUNICATION 38
4.2.3 FUTURE PROSPECTIVE OF 5G COMMUNICATION 39
4.2.4. CLOUD CONVERGENCE WITH 5G 40
4.2.5 MASTER CORE TECHNOLOGY 40
4.3 5G-IU 41
4.4 THE MASTERCORE EQUIPMENTS (MCE) 41
4.5 NANOTECHNOLOGY 41
4.5.1 HOW IT STARTED 42
4.5.2 BASIC CONCEPTS OF NANOTECHNOLOGY 42
4.5.3. STRUCTURE OF NANOTECHNOLOGY 44
4.5.4. DANGERS OF NANOTECHNOLOGY 46
5. CHAPTER 5: RESEARCH METHODOLOGY & DATA ANALYSIS 48
5.1 CONTEXT AWARENESS AND NATURAL INTERACTION 48
5.1.1 STRUCTURAL PLANNING OF CLOUD COMPUTING 48
5.1.2 ARCHITECTURE 48
5.2 NATURAL INTERACTION 51
5.2.2 INNOVATION RELATED TO IDENTIFICATION 51
5.3 RELATED WORKS 52
5.4 CLOUD COMPUTING 52
5.4.1 CHALLENGES 53
5.4.2 FUTURE OF CLOUD COMPUTING 55
5.4.3 INTERNET OF THINGS 56
5.4.4 WEARABLE TECHNOLOGIES AND CLOUD COMPUTING 58
5.4.5 TRADITIONAL IT AND CLOUD COMPUTING 58
5.5 Ipv6 59
5.5.1 KEY CHALLENGES 62
5.5.2 HETEROGENEITY 63
5.5.3 NETWORK AND RELIABILITY 64
5.5.4 SECURITY 65
5.6 INTERNET OF THINGS 66
5.6.1 WIRELESS SENSOR NETWORKS (WSN) 67
5.6.2 DATA STOCKING AND ANALYTICS 68
5.6.3 VISUALIZATION 69
5.6.4 APPLICATIONS OF IOT 69
5.6.5 APPLICATION SCHEDULER AND DYNAMIC RESOURCE PROVISIONING IN ANEKA FOR IOT APPLICATIONS 70
5.6.6 FUTURE OF IOT 71
5.7 RESEARCH METHODOLOGY 75
5.7.1 METHOD SELECTION 75
5.8 DATA ANALYSIS 76
5.8.1 RESEARCH QUALITY 77
5.8.2 EMPIRICAL STUDY 78
6. DISCUSSION 82
6. CHAPFER 6 - THE CLOUD OF THINGS 85
6.1 WHY IoT SHOULD BE THE CLOUD OF THINGS 86
6.2 THE INTERNET OF THINGS AND CLOUD COMPUTING 87
6.2.1 HOW THE INTERNET OF THINGS WILL CHANGE CLOUD COMPUTING 87
6.3 MOBILE CLOUD COMPUTING 87
6.3.1 BACKGROUND 88
6.3.2 MOBILE COMPUTING 88
6.4 CLOUD COMPUTING 89
6.4.1 FRAMEWORK 90
6.4.2 FUNCTIONS: 90
6.5 ARCHITECTURE OF MOBILE CLOUD COMPUTING 91
6.5.1 CONCEPT AND PRINCIPLE 91
6.5.2 CHALLENGES 92
6.6 OPEN RESEARCH ISSUES 92
6.6.1 ARCHITECTURAL ISSUES 92
6.6.2 ENERGY-EFFICIENT TRANSMISSION: 92
6.6.3 CONTEXT-AWARENESS ISSUES: 92
6.6.4 LIVE VM MIGRATION ISSUES: 92
6.6.5 MOBILE COMMUNICATION CONGESTION ISSUES: 92
6.6.6 TRUST, SECURITY, AND PRIVACY ISSUES: 92
6.7 CHALLENGES AND SOLUTIONS 93
6.7.1 LIMITATIONS OF MOBILE DEVICES: 93
6.7.2 QUALITY OF COMMUNICATION: 94
6.7.3 DIVISION OF APPLICATION SERVICES: 94
6.8 RELATED WORK 94
6.8.1 AUGMENTED EXECUTION: 94
6.8.2 FLEXIBLE PROGRAMS: 95
6.8.3 MIGRATION OPTIMIZATION: 96
6.9 OPEN RESEARCH ISSUES 97
6.9.1 DATA DELIVERY 97
6.9.2 TASK DIVISION 97
6.9.3 BETTER SERVICE 97
6.10 MAI VERSUS XAAS: THE LONG TAIL AND THE BIG SWITCH 98
6.10.1 PUBLIC CLOUD WORKLOADS: 2015 VS. 2020 98
6.10.2 PUBLIC CLOUD PROVIDER: THE PERFECT IoT-BACKEND 99
6.10.3 USE CASES IN THE INTERNET OF THINGS 99
6.11 PUBLIC CLOUD PROVIDERS CONTINUOUSLY NEED TO EXPAND THEIR PORTFOLIO 100
6.12 THE CLOUD OF THINGS ARCHITECTURE 101
6.12.1 FOUR DEPLOYMENT MODELS 102
6.12.2 VERTICAL APPLICATIONS 103
6.12.5 THREE LAYERS OF IOTSYSTEMS 114
6.12.6. FOUNDATIONAL TECHNOLOGICAL ENABLERS 115
APPENDIX 1: PHD DRAFT 115
APPENDIX 2: PAPER ON CLOUD COMPUTING 119
APPENDIX 3: PAPER ON INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT 126
APPENDIX 4: PAPER ON INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT 130
APPENDIX 5: RESEARCH PROPOSAL ON CHALLENGE IN CLOUD COMPUTING PLATFORM OF INTERNET OF THINGS 138

International Journal of Scientific and Research Publications (ISSN 2250-3153)
www.ijsrp.org
To read Complete Thesis,

You can buy it from below link:

For any further details, contact author at:

Email: assemam@live.com
documented to advertise imagination pleased from cloud's Web and Issues. Just like a final summarization of the entire manual, the Cloud of things new specifications premiered and explained using the expectancy of creating an average vocabulary for that IoT community.

References

11. Cloud computing and ubiquitous computing by Assem Abdel Hamed Mousa Ecommerce Technical Support Systems Manager, Cairo, Egypt

Works Cited

51. Cloud Computing: ICT’s Tower of Babel

60. Honbo Zhou,

61. Honbo Zhou,

68. Journal of Computer Science and Technology

90. Powell, Steven. Wireless Technology Applications, Management, and Security. Dordrecht:

101. Smarter Earth: Deciphering Internet of Things

115. Cloud computing and ubiquitous computing by Assem Abdel Hamed Mouse Ecommerce Technical Support Systems Manager, Cairo, Egypt

116. CHALLENGE IN CLOUD COMPUTING QUEST TO ENABLE THE FUTURE OF IOT OR COST EFFECTIVENESS IN CLOUD COMPUTING QUEST TO ENABLE THE FUTURE OF IOT

117. Globe com 2015,IEEE, Industrial Poster Presentation

118. WSIS may2015, High Level Speaker, Switzerland.

119. United nation high level meeting, sept 2015, NY

120. United nation high level meeting, DEC 2015, NY

121. Speaker in Aviation conference for future strategy planning in Egypt, Nov 2013.

125. Chief guest, ICIDRET 2014, India in August.

127. https://oneredrive.live.com/?id=94B6ABA85272A3A5%21443&cid=94B6ABA85272A3A5&group=0

132. https://www.slideshare.net/assemam search by :assem abdl hamied moussa/assem abdel hamed mouse/assem moussa/assem moussa